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The catalytic asymmetric addition of nucleophiles to ketenes
represents an attractive strategy for the synthesis of enantioenriched
carbonyl derivatives, including biologically and industrially sig-
nificant classes of compounds such as arylpropionic acids.1 For
the catalyzed addition of alcohols to ketenes, enantiomeric excesses
as high as 75-80% have been obtained.2 In contrast, to the best of
our knowledge there are no examples of catalytic asymmetric
additions of achiral nitrogen nucleophiles to ketenes.3 In this
communication, we describe a method for achieving this objective
(eq 1).

Because simple amines can rapidly add to ketenes in the absence
of a catalyst, we focused our investigation on less-reactive nitrogen
nucleophiles. In early studies, we determined that pyrroles do not
react at room temperature with ketenes such as phenyl ethyl ketene.
In contrast, additions can proceed swiftly when commercially
available planar-chiral 4-(pyrrolidino)pyridine (PPY) derivative14,5

is employed as a catalyst; significantly, in the presence of
enantiopure1 and an appropriate pyrrole, theN-acylpyrrole can be
generated in high enantiomeric excess (Table 1).

With pyrrole itself as the nucleophile, the new stereocenter is
produced in moderate ee (Table 1, entry 1). Although incorporation
of an alkyl substituent into the 2-position leads to racemic product
(entry 2), the presence of an electron-withdrawing group provides
enantioenrichedN-acylpyrroles (entries 3-5), with commercially
available 2-cyanopyrrole furnishing excellent stereoselection (91%
ee; entry 5). A pyrrole that bears electron-withdrawing groups in
the 3- and 4-positions affords fair ee (entry 6), as does indole (entry
7). 2,5-Disubstituted pyrroles do not appear to be suitable reaction
partners (entry 8).

We next turned our attention to determining the range of ketenes
that are suitable substrates for this new catalytic enantioselective
process (Table 2).6 We have established that very good ee’s and
yields are obtained for reactions of a wide array of phenyl alkyl
ketenes (R) Me f t-Bu; entries 1-4); particularly noteworthy
are the results for sterically demanding phenyl isopropyl ketene
and phenyltert-butyl ketene (entries 3 and 4), which furnishR

stereocenters that are relatively difficult to generate by other
methods (e.g., alkylation). An increase in the size of the aryl group
leads to an increase in enantiomeric excess (entries 5 vs 2 and
entries 6 vs 1), and heteroaryl substituents are tolerated in this
process (entry 7).

We anticipated that, in contrast to simple amides, we would be
able to derivatize ourN-acylpyrroles under relatively mild condi-
tions, thereby enhancing the utility of this new catalytic asymmetric
addition reaction. Although a few transformations ofN-acylpyrroles
have been described,7 none involve a 2-cyanopyrrole. We were
pleased to discover that theseN-acylpyrroles can be converted into
a wide array of useful compounds with essentially no erosion in
enantiomeric excess (Figure 1;e2% racemization in all cases).
Thus, chiral acids (2),8 esters (3),9 and amides (4)10 can be generated
through reactions with water, alcohols, and amines, respectively.
In addition, by appropriate choice of reducing agent, an aldehyde
(5; LiAlH(O t-Bu)3)11 or an alcohol (6; NaBH4)12 can be produced
selectively.

We have pursued an investigation of the mechanism and origin
of stereoselection for the enantioselective addition of pyrroles to
ketenes catalyzed by1. We chose to focus our attention on the
coupling of 2-cyanopyrrole with phenyltert-butyl ketene, since this
reaction proceeds at a convenient rate at room temperature (t1/2 ≈* To whom correspondence should be addressed. E-mail: gcf@mit.edu.

Table 1. Dependence of Enantioselectivity on the Structure of the
Pyrrole

a Average of two runs.b No N-acylpyrrole was produced.

Table 2. Catalytic Enantioselective Addition of 2-Cyanopyrrole to
a Range of Ketenes (eq 1)

entry Ar R ee (%)a yield (%)a

1 Ph Me 81 91
2 Ph Et 90 93
3 Ph i-Pr 95 96
4b Ph t-Bu 81 90
5 o-tol Et 98 95
6 o-anisyl Me 94 94
7 3-(N-methylindolyl) Bn 86 80

a Average of two runs.b 5% catalyst.
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50 min), and we have made the following observations: (1)
Treatment of 2-cyanopyrrole with1 leads to deprotonation of the
pyrrole and formation of an ion pair; this ion pair, not1 itself, is
the resting state of the catalyst during the reaction. (2) The reaction
is first-order in phenyltert-butyl ketene, first-order in1, and zero-
order in 2-cyanopyrrole. (3) A primary kinetic isotope effect of
∼5 is observed (1-H-2-cyanopyrrole vs 1-D-2-cyanopyrrole). (4)
The ee of theN-acylpyrrole varies linearly with the ee of1.13,14

On the basis of these data, we believe that enantioselective
additions of pyrroles to ketenes catalyzed by PPY derivative1
proceed through the pathway illustrated in Figure 2. Deprotonation
of 2-cyanopyrrole by the catalyst furnishes ion pair7. The
nucleophilic pyrrole anion then adds to the ketene, generating a
new ion pair (8), which consists of an achiral enolate and a chiral
Brønsted acid (protonated1). In the turnover-limiting and stereo-
chemistry-determining step of the catalytic cycle, proton transfer
occurs to produce a chiralN-acylpyrrole and to liberate catalyst1.
Deprotonation of 2-cyanopyrrole by1 then regenerates ion pair7,
completing the catalytic cycle.

In the pathway depicted in Figure 2, the role of catalyst1 is to
serve, in protonated form, as a chiralBrønsted acid.15 This contrasts
with other applications of planar-chiral catalyst1 and related
compounds, wherein they function as chiralnucleophiles(Lewis
bases).16

In summary, we have developed the first method for the catalytic
enantioselective addition of amines (specifically, pyrroles) to
ketenes, and we have demonstrated that the resulting acylpyrroles
can be transformed into a broad spectrum of useful derivatives.
On the basis of mechanistic studies, we suggest that the planar-
chiral catalyst plays an unanticipated role in this process as a chiral
Brønsted acid.
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Figure 1. Transformations of theN-acylpyrroles.

Figure 2. Possible mechanism for the enantioselective addition of pyrroles
to ketenes catalyzed by1.
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